Steroid signal transduction activated at the cell membrane: from plants to animals.

نویسندگان

  • Ewa Marcinkowska
  • Antoni Wiedłocha
چکیده

Steroid hormones in plants and in animals are very important for physiological and developmental regulation. In animals steroid hormones are recognized by nuclear receptors, which transcriptionally regulate specific target genes following binding of the ligand. In addition, numerous rapid effects generated by steroids appear to be mediated by a mechanism not depending on the activation of nuclear receptors. Although the existence of separate membrane receptors was postulated many years ago and hundreds of reports supporting this hypothesis have been published, no animal membrane steroid receptor has been cloned to date. Meanwhile, a plant steroid receptor from Arabidopsis thaliana has been identified and cloned. It is a transmembrane protein which specifically recognizes plant steroids (brassinosteroids) at the cell surface and has a serine/threonine protein kinase activity. It seems that plants have no intracellular steroid receptors, since there are no genes homologous to the family of animal nuclear steroid receptors in the genome of A. thaliana. Since the reason of the rapid responses to steroid hormones in animal cells still remains obscure we show in this article two possible explanations of this phenomenon. Using 1,25-dihydroxyvitamin D(3) as an example of animal steroid hormone, we review results of our and of other groups concordant with the hypothesis of membrane steroid receptors. We also review the results of experiments performed with ovarian hormones, that led their authors to the hypothesis explaining rapid steroid actions without distinct membrane steroid receptors. Finally, examples of polypeptide growth factor that similarly to steroids exhibit a dual mode of action, activating not only cell surface receptors, but also intracellular targets, are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brassinosteroid signal transduction--choices of signals and receptors.

Small signaling molecules that mediate cell-cell communication are essential for developmental regulation in multicellular organisms. Among them are the steroids and peptide hormones that regulate growth in both plants and animals. In plants, brassinosteroids (BRs) are perceived by the cell surface receptor kinase BRI1, which is distinct from the animal steroid receptors. Identification of comp...

متن کامل

I-34: Steroid Hormone Signalling at the FetomaternalInterface

Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...

متن کامل

Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation.

A putative Membrane Steroid Binding Protein (designated MSBP1) was identified and functionally characterized as a negative regulator of cell elongation in Arabidopsis thaliana. The MSBP1 gene encodes a 220-amino acid protein that can bind to progesterone, 5-dihydrotestosterone, 24-epi-brassinolide (24-eBL), and stigmasterol with different affinities in vitro. Transgenic plants overexpressing MS...

متن کامل

Changing Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis

Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...

متن کامل

Systemin: a polypeptide signal for plant defensive genes.

Damage to leaves of several plant species by herbivores or by other mechanical wounding induces defense gene activation throughout the plants within hours. An 18-amino acid polypeptide, called systemin, has been isolated from tomato leaves that is a powerful inducer of over 15 defensive genes when supplied to the tomato plants at levels of fmol/plant. Systemin is readily transported from wound ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 49 3  شماره 

صفحات  -

تاریخ انتشار 2002